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ABSTRACT 

This paper gives an overview of hardware implementation techniques employed in 
solving real-time classEfication problems using Neural Network, Principle Component Analysis 
(PCA), and Independent Component Analysis (ICA) techniques. The first  part of the paper reviews 
digital, analog, and hybrid strategies for hardware implementation, outlining their advantages 
and disadvantages. The second part  focuses on dedicated VLSI chips developed at  the Jet 
Propulsion Laboratory (JPL). 

A  flexible neural network chip with 64 neurons and a 64x64 synaptic weight array with 
8-bit resolution is first presented. This chip can be theoretically cascaded to  form a larger 
network, connected in  parallel to improve a)tnamic range or resolution, or connected in a loop to 
create a  feedback neural network. A second neural network chip is presented that was fabricated 
using Silicon-On-Insulator (Sol) technology. This second chip operates at 1.5V, has neurons with 
variable transfer functions,  and has completely compatible inputs and outputs, allowing simple 
and direct cascading and feedback.  A 64x64 synaptic weight array chip is then introduced that 
has 8-bit resolution and a time response of less than 250ns. This chip was stacked to obtain a 
cube of 64 chips with an estimated data processing speed of I O i 2  operations per second. 

A data input chip called the Column Loading Input Chip (CLIC) was designed, fabricated 
in l . 0 p  CMOS technology, and tested. The chip can take 64x64 digital bytes and convert them 
into 64x64 analog inputs to  a 3-0 parallel processing cube. The CLIC was designed to raster 
through a large image window, taking a new 64-byte column or row of data from the main image 
every 250ns. The cube processes this data using PCA or ICA techniques and passes its output to  a 
neural network classlJier. 

In the cube architecture, power consumption is one of the most important concerns and 
has, so far, inhibited designs of larger arrays. However, recent,SOI technology seems capable of 
improving major aspects of performance  by providing power consumption reduction, latch-up 
avoidance, and mixed signal noise reduction. A new 3-0  architecture is proposed which is similar 
to the original cube but is more robust for stacking and easier to test, and its application to a 
hyperspectral sub-pixel classijkation  problem is discussed. 



I. INTRODUCTION 

At JPL, we have developed a variety 
of chips that can be  used as building blocks 
for hardware computation of general- 
purpose algorithms germane to sensor 
fusion. Our building block chips are 
cascadable to create larger networks that 
were necessary for some of our recent 
applications [ 1,2]. In addition, many of the 
chips are stackable in a third dimension to 
achieve increased parallelism, providing the 
computational power necessary to solve 
problems such as real-time spatio-temporal 
target recognition and Hyperspectral sub- 
pixel classification. Our latest 3-D chip 
stacks have been designed to provide 
computational power on the order of 10l2 
operations per second [3-51. 

Section I1 discusses the hardware 
implementation strategy used in most of our 
chips, and explains why our approach is 
superior to the alternatives. Section I11 is an 
overview of the latest building block chips 
that we are currently using to create 
powerful prototype 3-D architectures. 
Section IV will show  how  the 3-D 
computational architectures created using 
our building block chips might be used to 
solve hyperspectral sub-pixel classification 
problems. The architecture presented uses 
Principal Component Analysis (PCA) [6] or 
Independent Component Analysis (ICA) [7- 
101 techniques to estimate end members, 
and then classifies these estimated end 
members using an artificial neural network. 

11. IMPLEMENTATION STRATEGY 

In order to accomplish real-time 
sensor fusion, fundamental operations such 
as addition, subtraction, and multiplication 
must be implemented in hardware. If 
artificial neural networks are to be used, the 
neuron transfer function must also be 

realized in hardware to achieve adequate 
speed. These operations have traditionally 
been implemented in primarily digital or 
primarily analog hardware [ 1 1,16-181, but 
we have developed hybrid implementations 
that retain the advantages of each approach 
while eliminating or minimizing their 

Fully digital implementations such as 
the CNAPS board by Adaptive Solutions 
[l 11 are attractive for a number of reasons. 
First of all, digital memory allows for very 
robust long-term storage of synaptic 
weights, while digital computation has 
extremely high noise immunity. In addition, 
because of the binary nature of digital 
signals, very fast devices can be used 
without consideration for their linearity or 
accuracy. There is also a large amount of 
flexibility inherent in digital processing, 
allowing the implementation of nearly any 
desired architecture with as much precision 
as  is required. This flexibility, however, 
does not usually include massively parallel 
implementations, especially those that are 
scalable. Digital implementations typically 
occupy a large amount of active die  area  as 
well, and have fairly high dynamic power 
consumption. The architectural limitations 
coupled with increased power consumption 
at high clock rates actually limit most digital 
implementations to relatively slow overall 
throughput, in spite of the high operational 
speed of the individual devices. 

In contrast to digital 
implementations, analog techniques can be 
used to implement fully parallel 
architectures that are easily scalable. They 
are also capable of achieving higher 
throughput with lower power consumption 
and less die area than digital 
implementations. Unfortunately, they suffer 
from low noise immunity and their weight 
storage mechanism often requires refresh 
circuitry to maintain accurate values over 
long periods of time [12]. Alternative 

r weaknesses [ 1,3]. 



approaches to analog memory, such as 
floating gate technology [ 191, eliminate the 
need for refresh circuitry, but they do not 
have arbitrary precision and cannot be 
updated with sufficient speed [ 131. After 
learning, however, neural networks can 
tolerate relatively poor accuracy [ 141, so the 
noise and precision limits of analog 
computation may not be critical. In general, 
analog circuitry appears to be much more 
suitable than digital circuitry for high- 
density 3-D applications, but the difficulty 
of realizing refresh circuits across a 3-D 
chip stack is significant enough to warrant 
the use of an alternative approach. 

In order to capitalize on the 
suitability of analog circuitry for 3-D 
architectures while maintaining the stability , 

and accuracy of digital weight storage, JPL 
has adopted a hybrid approach. Synaptic 
weights are stored digitally, thereby 
eliminating the need for refresh circuitry 
while ensuring adequate time response 
during learning. Synaptic outputs are 
represented as analog current signals that 
can be easily combined with any number of 
other outputs using only a common wire. 
This leads to an architecture in which 
multiplication is performed by Multiplying 
Digital to Analog Converters (MDACs); 
additiodsubtraction is the result of KCL 
along the output wire; and neurons are 
implemented as non-linear I-to-V 
converters. The overall result is more 
compact and faster than digital circuitry, but 
without the noise sensitivity and long-term 
instability of analog weight storage. 

111. JPL HARDWARE 

This section outlines the integrated 
circuit building blocks developed at JPL for 
hardware artificial neural networks and 3-D 
parallel data processing architectures. It also 
outlines some specific 3-D architectures 

designed to solve real-time spatio-temporal 
problems. 

Neural Network Building Blocks 

NN64 Chip: 
In our early work, we fabricated a 

flexible neural network chip  in  0.8pm 
CMOS called the NN64, whose architecture 
is depicted in Fig. 1. This  chip contains: 

0 64 voltage inputs ranging from 2.0 V to 

0 a 64x64 array of 8-bit bipolar synapses 

0 64 variable gain neurons 
0 programmable bypass switches to select 

the summed current or neuron voltage 
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Fig. 1: Block  diagram of the NN64 architecture. 

The NN64 chip can be used as  a 
basic neural building block in either a 
feedforward or feedback configuration. It is 



potentially expandable horizontally and 
vertically, allowing for a much larger 
network to be created if necessary. It can 
also be connected as if it were stacked in a 
third dimension, which effectively increases 
the weight resolution and dynamic range of 
the network’s synapses. Cascading in the 
third dimension also allows for multiple sub- 
networks to process the same input data. 3-D 
architectures are discussed later in the 
section. 

SOICANN Chip: 
We recently fabricated a Silicon-on- 

Insulator Cascadable Artificial Neural 
Network (SOICANN) using MIT Lincoln 
Labs’ 0.25pm CMOS process, under 
sponsorship from DARPA’s Low Power 
Electronics Program. Although this chip is 
not as large as NN64, it was designed to be 
immediately cascadable without the need for 
interface circuitry. This allpws multiple 
chips to implement an arbitrarily large 
feedforward or feedback network. Each chip 
accepts 8 inputs, has 8 hidden units, has 8 
output neurons, and implements a 
constructive network architecture based on 
Cascade Error Projection [21-241. Each 
hidden unit can be viewed as a single neuron 
hidden layer with complete connection to all 
previous hidden layers as well as to all 
inputs. All neurons are programmable so as 
to exhibit a logistic transfer function, a 
gaussian transfer function, or to be bypassed 
completely. In addition, the output of each 
neuron can be either voltage or current, 
making the chip completely cascadable 
without limitation. SOICANN uses a 1 .W 
power supply and simulations show an input 
step response of  less than 200 nS through a 
single chip. As of this writing, the 
SOICANN die are being shipped back to 
JPL and have not yet been tested. 

3-0 Building Blocks 

Syn64 Chip: 
In [2]  and [3], we reported a 64x64 

synaptic weight array with 8-bit resolution 
that was fabricated in l.0pm AMI CMOS 
technology. This chip was intended to be a 

. stackable building block for a 3-D 
architecthre. It uses a 5V power supply and 
requires 64 analog voltage inputs that range 
from 2.0 to 3.0 volts. These inputs are then 
multiplied fully in parallel with 64 weight 
vectors that are stored digitally using an 8- 
bit bipolar format (+/- 127). The result of 
each multiplication is a current signal that is 
summed along one of 64 different lines. The 
details of this chip can be found in [2]. 

Column Loading Input Chip: 
3-D architectures require large arrays 

of parallel data as input. To achieve this, the 
“Column Loading Input Chip” (CLIC) was 
designed. The CLIC receives a 64x64 array 
of 8-bit digital data and converts it into a 
64x64 analog voltage array in 250ns [5] 
using a large array of compact digital to 
analog converters (DACs). The digital input 
array usually corresponds to  an input sub- 
image of a larger main digital image that is 
being processed. Inside the CLIC, the sub- 
image can be shifted up, down, or right one 
position while a new column or  row is 
loaded from the main image. This allows 
the sub-window to be moved around inside 
the main image without having to reload the 
entire CLIC. The CLIC was fabricated in a 
0.8pm HP CMOS process. Its voltage 
output array is available on 4,096 metal3 
pads, each of which measures 66x66pm2. 
Each DAC cell in the CLIC array is 
101.6x101.6pm2. 

3-0 Architectures 

vertical stack of sixty-four Syn64 chips 
Our first cube was created using a 
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Fig. 2: 3-Dimensional Artificial Neural Network" (3- 
DAW-M). In this  figure, CLIC provides  64x64 fully 
parallel analog  inputs with a  new  column  (64-bytes) in 
every  250ns  while  the  NPM  performs parallel template 
matching. 

forming a 3-D Neural Processing Module 
(NPM) intended for massively parallel real- 
time template matching for spatio-temporal 
problems[3]. At first an IR focal plane array, 
which required operation at  .77K[4], was 
mated to the  top of the NPM to provide 
direct parallel analog input. Later the IR 
focal plane array was replaced with the 
CLIC in order to exploit the full 
computational power of the NPM cube with 
more versatility. Fig. 2 shows a particular 
implementation called 3-DANN-M where 
the CLIC obtains a 64x64 sub-window from 
a 256x256 digital image and sends this sub- 
image to the NPM cube in a fully parallel 
fashion. The sub-image is multiplied with 
sixty-four templates in the cube where each 
template is a 64x64 array of 8-bit bipolar 
weights. All multiplications are performed 
in parallel every 2.5011s making the cube 

theoretically capable of 10l2 operations per 
second. Fig. 3 shows a photo of the 3- 

Current work is focused on 
combining the Syn64 and the CLIC 
functionality into a  new stackable building 
block for the next generation 3-DAW-R. 
This will eliminate the difficult task of 
bonding the CLIC to the top of the  NPM, 
which greatly simplifies the cube production 
process while enhancing testability and 
observability. 

Several challenging problems 
surfaced during the design of the NPM and 
the CLIC. Specifically, power consumption 

DANN-M. 

Fig. 3: 3-DANN-M. This  photo  shows  the 
CLIC on top  of the 3-DNPM  cube sitting on  the 
motherboard. 

and mixed signal noise are so critical that 
they may prevent us from thinking ahead to 
larger arrays and bigger chip stacks. 
Fortunately, Silicon-On-Insulator (SOI) 
technology is an attractive option that has 
the potential to neutralize both issues. SO1 
technology allows us to reduce power 
consumption drastically by reducing the 
supply voltage from  5 V to 1.5 V. It also 
reduces mixed signal noise by eliminating 
the substrate coupling of digital switching 
noise to analog components. Since Si02 is a 
good heat conductor it should also 



ameliorate thermal management within a 3- 
D chip structure. The SOICANN chip was 
designed in SO1 in part to evaluate these 
potential advantages. We have also 
fabricated Winner-Take-All (WTA) circuits 
using the same SO1 process as SOICANN 
and the test results are very encouraging 
~ 5 1 .  

IV. APPLICATION 

A lot of interest has recently been 
generated by research on Hyperspectral 
Sensor Imaging (HSI), which can be 
considered as a special case data fusion 
problem. Real-time classification of 
hyperspectral data can be extremely useful 
for certain types of target recognition and 
terrain or composition identification. In 
addition, NASA has recently expressed 
interest in a space-based, low power, 
miniature system that is capable of 
classifying hyperspectral data. 

The majority of current research on 
HSI focuses on sub-pixel detection. 
Unfortunately, the raw sensor data tends to 
be very noisy and inconsistent which makes 
the classification problem more difficult. 
PCA combined with neural networks has 
already demonstrated some success in sub- 
pixel detection [20]. Since each pixel 
contains data from multiple bands, all of 
which is available in parallel, there is a big 
advantage to massively parallel processing. 

In our application, each pixel 
contains data from 224 bands of differing 
wavelengths. In the 3-DANN architecture it 
takes 4 columns, each containing 64 bands, 
to process a single pixel. Since neighboring 
pixels may have relevant information for 
detecting a particular sub-pixel, a 3x3 
window of pixels (see Fig. 4) can be 
analyzed in parallel, requiring 36 columns of 
input data. Let the number of desired end 
members be N, and let W,,W2, ..., WN be the 

orthogonal vectors for PCA or independent 
vectors for ICA that are to be  used for 
separating the end members. After 
processing by the 3-DANN cube, the results 
can be described as follows: 

X is  an input vector representing one pixel 
(224x1). This input vector can be physically 
stored in 4 columns of  the CLIC. Wj is a 
weight vector stored in the columns of 3- 
DANN. The output vector Y, which is  an 
estimated decoding of  the end members, is 
then sent to the NN64, which can be used as 
a neural network classifier. This procedure 
improves detection rates by exploiting the 
neural network’s ability to learn and 
generalize. Finally a WTA can select the 
best classification match. Fig. 5 shows the 
system architecture. 

Fig. 4; Structure of hyperspectral  data. In this  figure, 
hyperspectral  data  consists of n=224  bands  per  pixel. A 
3x3  sub-window  is  analyzed  to  classify  the  center  pixel. 



From hardware designed at JPL, we 
are able to construct a discrete system for 
HSI analysis. Even though it is a discrete 
system, it is still extremely compact and low 
power in comparison to other state of the art 
systems capable of performing hyperspectral 
analysis; e.g. banks of Super Harvard 
Architecture RISC  Computer  (SHARC) 
DSP processors [25]. 

n 

capable of synthesizing large amounts of 
varied sensor data. 
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Fig. 5: Full 3-D architecture  for real-time HSI sub- 
pixel classification problem. 3-DANN operates as a 
linear pre-processor to separate  end members, NN64 is 
the neural network processor to enhance classification, 
and WTA  selects the best match. 

V. CONCLUSION 

A  number of powerful chips 
developed at JPL for use as building blocks 
in 3-D systems were presented briefly, along 
with a description of the 3-D architectures 
themselves. We also discussed the potential 
of using SO1 technology to overcome  two of 
the most difficult challenges inherent in 3-D 
chip stacks. Finally, we showed how our 3- 
D architecture might be applied to solve a 
hyperspectral sub-pixel classification 
problem. 

Our proposed 3-D architecture is 
extremely compact and features very high- 
speed operation with a power consumption 
of less than 5 Watts. Such a system should 
satisfy NASA’s requirements for high- 
density, low power, space-based systems 
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